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Abstract

For a large class of quantum states, all local (pointwise)energy conditions
widely used in relativity are violated by therenorinalized stress-crlcrgy
tensor of a quantum field.In contrast, certainnonlocal positivity con-
straints on the quantumn stress-c]lclgy tensor might hold quite generally,
and this possibility hasrcceived considerable attention inrecent years. In
particular, it is now known that the averaged null energy condition-the
condition that the null- nullcomponent of the stress-energy temsorinte-
grated along a complete null geodesic is nonnegative for all states- holds
quite generally ina wide class of spacetimes for a minimally coupled scalar
field. Apart from the specific class of spacetimes considered (mainly two-
dimensional spacetimes and four-dimensional Miukowskispace), the most
significant restrictionon this result is that the null geodesic over which the
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average is taken must beachronal. Recently, Larry Fordand Tom Roman
have explored this restrictionintwo-dimensional flat spacetime, and dis-
covered that in a fiat cylindrical space, although the stress-ellcrgy tensor
itself fails to satisfy theaveraged null energy condition (A NEC) along the
(non-achronal) null geodesics, when the “Casimir-vacuum” contribution
is subtracted fromthe stress- c]lcrg,y theresulting tensor dots satisfy the
ANEC inequality. Ford and Romannamece this class of constraints onthe
quantum stress-c]lergy tensor “difference inequalities.” Here 1 give a proof
of the diflerence inequality for a minimally coupled massless scalar field
inan arbitrary two-dimensional spacetime, using the same techniques as
those we relied on to prove ANECinan earlier paper with Robert Wald.
1 begin with an overview of averaged energy conditions inquantum field
theory.




1. Averaged energy conditions

All general results m relativity require someinformation ahout the mat-
ter content of spacetime as input. Althoughin classical physics the issue can
be avoided by assumning spat.ctil[Je to be empty, in quantumn theory absolute
vacuumn iS meaningless, and questions about how matter fields contribute to the
semiclassical Einstein equations arc unavoidable whenever quantum effects arc
unportant gravitationally. In classical relativity, inforinationabout the mnatter
content of spacetime can often be specified quite succinctly by the form of the
stress-energy tensor for a specific mat ter field. For example, the electrornagneti -
field contribution,
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canbe characterize] by stating thatthe stress-energy tensor has the formlq. (1)
for some closed two-form Fas that satisfies the vacuumn Maxwell’s equation
d+} = 0. Similar characterizations exist in principle iu quantum field theory.
For example, the regularized stress-energy tensor of a minimally-coupled scalar
field on Minkowski spacetime can be characterized as any tensor {7a¢) that has
the forin of the coincidence it
2 2

(Ta)(@) = lim ba,fayiw w(@,y) - %gab <ng_ami)ayd 4 ’”2> U’(J’,y)} (2)
in an inertial coordinate systemn {2%}, where w(a, y) is auy smooth, symmetric
hi-solution of the wave equation sucl | that the two-point function fto + w - where
Ho is the symmetric two-point function of the Poincare vacuum state satisfies
the positivity condition (scc Sect. 3 },cjow). Already in flat spacetime, adescrip-
tion of the quantum matter content based onlkq. (2) is far more complicated
than the corresponding classical description as illustrated by kq. (1). Inarbi-
trary curved spacetime, the kind of characterization of {Zat) expressediu Iiq. (2),
although available inprinciple, is so heavily cluttered with forinalisin as to be
essentially intractable.

In fact, even in classical physics acomplete, detailed specification of the
stress-energy as inIiq. (1) is seldom very illuminating unless one’s primary in-
terest is to find exact solutions of Finstein’s equations, Instead, in modern
approaches to relativity only the most fundamental features of 7as, distilled
from expressions like kiq. (1), arc relied 011 to gain generalinsight into spacetimme
structure. ‘] ‘hese fundamnental features arc that 7ab is a conserved, symmetric
tensor, and that 7ap satisfies certain “energy conditions” at every point inspace-
time; the energy conditions express, roughly, the idea that the locally -incasured
energy density must be paositi ve everywhere for al observers. ‘1 he energy con -
ditions (or, more precisely, at least the weak energy condition) arc universal
in the scnse that (i) they arc obeyed by the classical stress-cnergy tensors of
all matter fields, aud (i) they play a crucia role inderiving most of what wc
know about the large-sc.alc structure of spacctitne. Indecd, it is perfectly plau-




sibleto regard the encrgy conditions, along with the consecrvation property, as
acomplete characterization of classical matterin genera] relativity,

Indecp contrast with this classical picture,in quantum theory no such
compact characterization is yet available for theright hand side of the semi-
classica Finstein equations. The symmetry and conservation prop ertics still
hold for {7as), of course, bui none of thelocal energy conditions do. Fven
in flat, Minkowski space, theregularized (norlnal-ordered) expectation value
{w]:Too(2):|w) at any point & is unbounded from below as a functional of the
quantum state w. Onemight think that this is a pathology, as is often the case
inquantum field theory, that stems froin localizing the operator :7oo(2): to a
single point z in spacetime. It turns out, however, that the voluie integral of
(w7 bo(a):]w) Over any fixed,spacelike 3-box of finite size is aso unboundedfrom
below as a functional of w (and asimilarresult holds for the spacetime-voluine
integral over a compact 4-box). 1t appcars that by choosing the quantuin state
w appropriately onc canstufl an unbounded amount of negative energy into any
fixed, finite region of spacetinie, possibly a the expense of placing more and
more positive energy outside the sharply defined boundaries of that region ([1]).

Inthe absence of a workable, complete characterization of regularized
stress-cnergy tensors in quantum field theory, many of thebasic questions
about globalspacetime structure insciniclassical gravity remainunanswered.
For exainple, can spacetimne singularities, generically unavoidable with classical
matter, be avoided when quantumn eflects make the dominant contribution to
stress-energy? Are classically forbidden configurations of spacetime curvature
(such as traversable worinholes, certainkinds of topology change) allowed in
semiclassical gravity? Isthe total mass of aboundedlump of quantized matter
positive as measured from infinity? More generally, is any conserved tensor 7as
redlizeble as the regularized stress-clicrgy tensor of somne quantum state? If this
were the case, sciiclassical gravity would have almost no physica content. If it
is not the case, then what are the constraints 7as has to satisfy to be a physical
stress- energy tensor?1 would like to advocate the discovery of a useful and
complete characterization of quantum stress-encn-gy tensors asone of the most
himportant unsolved problems incurved spacetime quantum ficld theory.

Promising {irst steps towards the construction of such a characterization
have appcaredinrecent years, beginning with [2], aud with further develop-
ments in [3]- [8]. Au earlier work, Ref. [9], discussed somewhat related issues.
The results of these early investigations concern various nonlocal constraints on
the stress-cnerg,y tensorinvolving itsintegrals along causal geodesics; the most
important of these constraints is the averaged null encrgy condition (A NEC).
In its simplest form, ANEC constrains the stress-energy tensor 7ab such that
the integral

/7;”, ko kbdy > 0, ©)
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where v is acomplete null geodesic with afline parameter v and corresponding
tangent vector k¢. The precise, general formulation of ANEC which dots not
assume the convergence of the integralinFq.{3) cau be foundin Sect.2 of [4].




For a number of significant global results in relativity, ANEC (or at least a
corresponding condition along; half- complete null geodesics) scems to be strong
enough, o replace the classical pointwise null energy condition; these include the
Penrose singularity theorem ([10]- [12]), and the positive mass theoremn ([13]).
For a minimally coupled scalar field in two dimensions, it is known that the
regularized stress-energy tensor satisfies ANIC with complete generdlity, along
al complete achronalnull geodesics in any globally-llypcrbolic spacetiine, and
in every Hadamard quantumn state of the field ([4]). In four dimensions, this
general ANEC result holds in Minkowski spacetiine, and, more generally, in
any spat.ctiinc with a bifurcate Killing horizon it holds along the achronal null
gencrators of the horizon, provided anisometry-invariant (with respect to the
Killing field) Hadamard state exists (sce [4] for details).

Conditions similar to ANEC hut with « replaced with a complete timne-
like geodesic hold with some generality for quantum stress-clicrgy tensorsin
Minkowski space ([2], [6], ['i’]). lowever, this appears to be a specia feature of
flat-spacetime quantumn field theory; it is not diflicult to find curved-sr)acctilllc
counterexamnples to the timelike averaged weak energy condition ([14]). In fact,
relying on a simple scaling argument, wc pointed out in[4] that even ANEC,
although it holds with complete generality in two dimensions, cannot hold gen-
erally in curved four-dimensional spacetiines (sce [1 6} for a further development
of this scaling idea). Although this argument andits conelusioo arc correct, it
is by no means clear that they spell the demise of averaged encrgy conditionsin
quantumn field theory; that many people have beenled to believe so appears to
be the result of a greatly exaggerated interpretation of the argument. Elsewhere
([17]) 1 argue for a more moderate interpretation, based, essentially, on a gener-
alized version of ANECinwhichtheright hand side of Iiq. (3) is replaced with a
more genera {inite lower bound. 1 do regard ANI+;C-type incqualitics as a very
promising starting point towards the formulation of a comnplete set of universa
constraints that characterize quantumn stress-cllcrgy tensors. For example, one
might think that ANEC is too weak because it only constrains the integrals of
Tab along null geodesics; in fact, ANEC appears to be powerful enough to place
constraints on other, more general averages of the stress-energy tensor. 1 will
now present asimple analysis that supports this view:

1 will consider a stress-energy tensor 7abthat satisfies the simnple formn
Of ANEC given by Eq. (3); therefore 1implicitly assume that 7as falls off ap-
propriately at infinity. A moresophisticated analysis that dots away with this
assumption (and possibly with somne of the other strong assumnptions 1 will make
below) can probably be given; 1rctain these assuinptions to keep iy analysis
transparent. More precisely, 1 consider a globally hyperbolic spacetime (M, g),
and a conserved stress-c]lcrgy tensor 7as which satisfies ANEC in the form of
¥q. (3) along all complete, achronal null geodesics in (M, g). Let 3¢ Mbe a
spacclike Cauchy surface, and S ¢ ¥ be a compact submanifold (with bound -
ary) in 2. 1 assume:

(Al) The subregion S ¢ Y is chosenlarge enough suchthat ANEC [Eq. (3)]
holds along the null gencrators of the future horizon H4 (S).




Note that the gencrators of H ¥ (S) arc necessarily achronalnull geodesics; they
have their past endpoints 011 the boundary 05 of S, andtheir future endpoints
on a(in general complicated) caustic set €. 1 assumne that:

(A2) There exists a time function a defined on the domain of dependence D1(.S)
such that (i) e =0 on S anda= 1 011 JI¥(S), (ii) o, = - K g 011 S, wheren®
is the future-pointillg unit norinal to S and & is a positive constant, and (iii)

throughout the interior of )1 (S)
Taba;ab < qy'aba;aa;b (4)

for somne constant ¢ > 0.

Theorem: Under the assumptions (A1) and (A2),the total encrgy contained
in the region S C3I is nonnegative:

/’J'“bnam d®c > 0, (5)
S

where d3¢ is the volume element 011 3.

Figure 1. The ‘geometry involved in the analysis leading to Eq. (5). The
spacelike surfaces S, are the level sets of the time function «; accordingly,
SO isSand S; is the future horizon 111 (S).

The assumption (A 1) is quite reasonable within the scope of the present
discussion); only the last part of assumption (A2) [i.e, the inequality Eq. (4)]
is unpleasantly strong. (See I'ig. 1 for a two-dineusional representation of the
geomnetry involved in this analysis). Notice that 7a¢ dots not necessarily satisfy
the (pointwise) weak energy condition, so the ri.gilt hand side of kq.(4)isnot




necessarily positive, and siiply choosing a large q >0 willnot do. Moreover,
because of its construction the time function a has to develop gradient singular-
itics at the boundary 8.5 and a the caustic set €[but cr is stmooth throughout
the (open) interior of the domain of dependence D1 (S)], so q. (4) effectively
constrains the asymptotic behavior of 7ab near € and 8S (see Fig.1). For a typ-
ical example of the geometry involved here consider two-djinensional Minkowski
spacctime, with the surface ¥ givenby {t-= - A’}, K > 0, and with S ¢ 32 given
by that piece of>; lying within the wedge {l= < It {}.In this example the horizon
HY (9) is the past null cone of the origin, H1(S) = {|{|=|z|, -K << o},
and for |z] << |t| the time function & can be taken as

1 ., x?
o = -]\/, (]\ —{ {- ’i )

up to corrections of order (22/t?). This function satisfies the conditions (i) and
(ii) of (A2) [againup to order (2?/t?)] with k=1/K . Then, assuming that
Tbo is the dominant component (in absolute value) of 744,

00 9 32 ,
Tabﬂ‘;ab ~ 100 TR 7 Kt t2
1 72
jlabﬂ’;aa;b v r]vOO 0,21 - 7v00 =, 14 =,
li ( t? )

Therefore, in the region |2 < |t] throughout the domain of dependence DA(S),
the quantity 7%%a; a6 has thesamesign as 7'%* aa0p and is down inmagnitude
by a factor 22/1%. With the provision that 7'*? fals off nicely a the boundary 85
and near the caustic set (here the origin) € (where the true a becomes singular),
and with the constant g chosenintherange O < q < 1, this Minkowski-spacetiye
example suggests theinequality I'q. (4) to be areasonable assumnption. Quite
possibly this inequality canbe wcakened considerably without changing the
main argument inthe proof of the theoremn, which I now proceed to give.

Proof of the theorem:Let medefine (sec Iig. 1)

{pe DS lal(p) = u},
{pe DV(S) |alp) < u}.

Su

Vu
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By integrating the identity
(r]'ab(l/;a);b = 7‘ab0’;ab

over the volume VU, lobtain

-/ ’J'“ba;a7lbd3o-| / ’J‘“ba;anbdsa :,/ ’J‘“ba';ade, (6)
Sy So

Vu

where 1y denotes the future-poilltillg unit normalanddois the volume form
011 Sy . Putting

I(u) = - / 7% ny d’o (7)
o
and combining liq.(6)withlkq. (4), 1 obtain the inequality
1) < 104 g [ 100004V (8)
V.




Since @ is parallel and opjosite to the future-pointing unit normal ny, the
second termon the right hand side of Fq.(8)canbe written as

u
/ Tab(l;aa';b dv = - / da / T“b(f;anb 40
v, 8 Sa

ru
= / dol(e); (9)
0
hence the inequality Eq. (8) takes the form
I{u) < 1(0) - q/ I(e)da . (lo)
0

Now inspect the definition]] Eq.(7) of the quantity 7(u).On the null surface
{a=1} = H1(S), o** (since it is a null gradient) is necessarily an afline tan-
gent vector along the null geodesic generators. Therefore, I(1) is the average
over the set of null generators of 111(S) of the ANEC integrals of 7as along
those generators. Thus 7(1) > 0 by assumption (Al). But it is clear from the
inequality Kq. (10) that the conclusion (1) > 0 is incompatible with the as.
sumnption 1(0) <0. Therefore 1 conclude that 7(0) > 0. By assumption (A2)-(i)
and (A2)-(i1)

](O) = n/ .rl'abna?lb d’o ,
s

andthe assertion of the theorem [Fq. (5)] follows. []

2. Difference inequalities

As I mentioned briefly nthe previous section, ANEC needs to be gen-
cralized since in the strict form given by F q. (3) it is typically violated infour-
diimmensional curved spacetimes ([4], [16]). Themost natural generalization of
ANEC involves replacing the right hand side of Iq. (3) with a broadly spec-
ified lower bound; 1 will discuss thisinmore detail in [17]. Another, closely
related gencralization has been discoveredby 1,. Ford and T. Romanin [1 8]; it
involves what they term “difference inequalitics.” A diflerence inequality is an
ANI;C-type inequality of the forin

({wlTalw) - Day) kkbdv > 0 Vw | (11)

-
where (W |[7ab|w) denotes the renorinalized Stress-ellmgy teusor in the quantum
state w, fJab is a state-independent, geometric tensor on spacetime, and the
integral is evaluated along acomnplete null geodesic + as inkq. (3). The differ-
ence inequality canbe given a more precise formulation that does not require
the convergence of the integral inkq. (1 1) in just thesame way as A NEC [sce
Sect. 2 of [4] and kq. (15) below]. If the integral

/ Dap k*kY dv (12)
o
converges, Yq. (1 1) yields a (in general nonzero) lower bound 011 the ANEC

integral:

(W Taplw) kk* dv > Dgp kb dv VW, (13)
Jy Jy



It is this form of the difference inequality which makes it potentially significant
for applications such as singularity theorems (see [17]).

What Ford and Roman have discovered in []18] is that for a massless
Klein-Gordon field on the fiat cylinder (two-dimensional Minkowski spacetime
identified modulo a discrete group of spatial translations), the diflerence in-
equality Eq. (1 1) holds along al comnplete null geodesics provided 12qb is the
stress-energy tensor of the Casinir vacuum state:

-1
D= 231,2[ 0 _1], (14)

where I isthe length of the spatial sections (i. e, the points (2,t)and (z+41,t)in
Minkowskispacetime arc identified). Note that complete null geodesics onthe
cylinder arc notachronal, and ANKC is violated aong thern [e.g. in the Casinir
vacuumn state where (153) iS given by the right hand side of kgq. (14)], Also
note that the difference incquality cannot have the form Eq. (13) in this case
since theintegral I5q. (1'2) dots not converge. Nevertheless, this two-dinniensional
difference-inequality result of [18] relaxes the achronality assumption of the
ANEC theorem proved in [4], and its main significance lies in thisimprove-
ment.

In the remaining sections of the paper 1 will give a general proof of the
difference inequality for a massless Klein-Gordon field in an arbitrary, globally
hyperbolic two-dimensional curved spacetime (M, g). More preciscly, for every
Hadamard state w of the field and for every complete null geodesic v in (M, g)
with afline parameterv€ (- cm, o), 1 will prove that the following holds: Let
¢(2)be any bounded real-valued function of compact support on IR whose Fourier
transform é(k) is such that for some & > O the function (14 k?)!1¢|é(k)| is
bounded [i.e, |¢(k)| decays at least as fast as |k|~ 2-26 as |k| -> oo; this implics
that ¢(2) is C'.] Then, for al choices of origin of the afline parameter v, the
regularized stress-energy tensor {w|7us|w) satisfies the inequality

]i;ninf ({w

-0

Tap|w) - ])ab)kakb [e(v/N))?dv > 0, (15)

- 00

where Dab is a state-independent tensor which 1 will specify [Iab depends only
on the geometry of (M, g)]. When theintegrand ((w|Taslw) - Dab) k2 kY is inte-
grable,Fq. (15) reduces to the siinple formi Fq. (1 1) of the difference inequality.

My proof of the differenceinequalit y Eq.(15) will be entirely parale to
the proof of ANEC in two dimensions that wc gave in Sects. 4and 5 of [4],
andlwill omit al details which arc simply restaternents of the corresponding
details in [4] modified to suit the present analysis. Consequently, readers who
wish to follow the remaining sections of this paper closely will find it useful to
have a copy of [4] at hand while they do so. 1 will begin, in Sect. 3 below, by
discussing the relationship between quantum states on Minkowskispacetimcll{2
and quantum states on the flat cylinder S* X It. 1 describe the proof of the
difference inequality for the flat cylinder S! x IRin Sect. 4, and for a general,
curved two-dimensional spacetimein Sect. .




3. States on R? and states on S! x K

AS \c did throughout [4], so aso here 1 will adopt the agebraic viewpoint
on quantum field theoryina curved (globally hyperbolic) spacetime (M, g). In
particular, quantum states w arc specified by their two-point distributions

Al G = w(e[F)e[G)) 1,Ge sM) , (16)
A(S, g) = A[IS, Ig) [ree (M), 17)

where S(M) is the space of all solutions of the Klein-Gordon equation which are
compact supported on Cauchy surfaces,and I/ f € S(M) demotes the “advanced
minus ret arded” solution with source f € C§° (M) (see Sect. 3 of [4] for a con-
cise introduction to the algebraic approach). The two- point function A can be
written in the formn

Az pd dio, (18)

where pu[l, G] = Re(A[F, G]), and o[}, G] is the Klein-Gordon inner product
(secSect. 31n [4] for details). The agebraic posit ivity condition on the state w
is equivalent to the incqualities [, F] 2 O VI'€.S(M), and

plFF 4G, G 2Yo[1 Gl P VP, G e S(M) (19
Note that ¥q. (19) imnplies u[#,F] >0 for all 11' & O iu S(M).

Let Ml denote thetwo-dimensional Minkowski spacetime (IRZ,n), where
n=da? - di?= - dudv, and let . denote the flat cylinder S x R obtained
from Minkowski space by the identification (2, t) = (2 -« L, t). Thercexists a
canonical “wrapping” map W : C§* (MI) -\ C§°(Il.) given by

W f(a,t) v » }; flz+ nlLt), JeCyr (M), (20)

ns ~ oo

and a corresponding “wrapping” map Ws : S(M) -> S(I.) which satisfies
Wso Iy = Ky, 0 W, w here Iprand I;, denote the advanced-lllinus-retarded
Green’s functions 011 M andll, respectively. 1 will denote Wsby the same syin-
bol as W as loug as it is clear fromthe context which map is which. Also, with
JeCF(M)and F e S(M), 1 will usc the shorthand notation f*¥ and % to
demote W(f)e C (I.)yandW(F)e S(11,), respectively. Note that the map W
is onto both from Cg§° (M) to C§° (1.) and from S(M) to S(11.).

Let ¢ be a massless Klein-Gordon field on MI, and similarly on II,. A
Hadamard ([4]) quantumn state w on M is specified by a two-p oint function of
the forim

par (2, 2') = jo (2, 2" ) Hwp (2, 2 (21)

where ftonm is the two-point function of the Poincare vacuumn [given by Eq. (19)
in [4], Sect. 4], and wpy is a smooth, syminetric bi-solution of the Klein-(jordoll
equation such that jips: MtoMm 4wy satisfies the positivity inequality

(1, ) i (9,9) 2 3 lom (S, ) Vi, g ey (M) . (22)




Ontheflat cylinder 1., the analogue of the Poincare vacuum state is the Casimir
vacuun, which can be constructed, e.g., by amode decomposition where positive-
frequency solutions arc defined with respect to the canonical timelike Killing
vector onl.. The Casimir vacuum is a Hadamard st ate and 1 will denote its
two-point function by yer, [sce Fq. ('28) below]. The two-point function of any
other Nadamard state on I, canbe written inthe formn

ur(z ') = por(e,2’)+ wi(z, 2’y (23)

where wy, is a smooth, symnmetric bi-solution of the Klein-Gordon equation on
[1. suchthat g, satisfies the positivity inequality appropriate for I.:

(5 D) e, 9) = den(f, )P VS, g€ C(IL) . (24)

What is the relationship between Hadamard states on 1. and Hadamard states
on the Minkowski spacetime MI? To explore this question, it is convenient to
pull back distributions defined onll, (such as iy, and a, ) via the wrapping map
W so that they become distributions on Mi. For example, the pull-back of tile
distribution iy, is the distribution g, ™ on Ml defined by

ML, 9) = (fY 6% I, g€ Co (M), (25)

and the pull-backs gy, M,wLM and c3, ™ of the distributions #oL, wy, and 07,
are defined similarly. Since the wrapping map W is onto, 1 can now rewrite the
positivity condition for wy,[lg. (24)] as aniunequality defined purely on MI:

(o™ 4 w1, 1) (o™ 4 wiM)g.9) = dlonM(f,9)I?

V fige CEM).  (26)
IS jup M= IIOI,M‘le,M the two-point function Of a Hadamard state on Minkowski
spacctime? Clearly, y;,M in gencral, and 01, M in particular, allhave the correct
short distance behavior to be genuine Hadamard states on MI ([1 9]), However,
it is easy to scc ([20]) that u;,M fails to satisfy the positivity condition kq. (22)
on MI, hence it fails to be aquantum state to begin with. The reason is simple:
there exist many nonzero f € C§° (M) such that Fprf7 O and W(f)= O; in
other words, there exist nonzero F' € S(M)suchthat ¥ = O. ‘I'bus, for cach
such I'€ S(M), 1 # O and i, M[I', }') = O, and this contradicts the positivity
inequality on M.

The next natural question to ask is whetherw ™ is the regularized {wo-
point function of a Hadamardstateon M. in other words, given a smooth,
symmetric bi-solution wy, on II. which satisfies the inequality liq. (26), is the
two-point function ftom 4w ™ aladamard state on Minkowski spacetime?
'This two-point function has the Hadamard form by definition, and, physically,
would make sense as the “unwrapping” of the quantumn state for. - WI, onto the
covering space MI. Clearly, the arguinent above proving #or™ + wp M to be in
violation of positivity does not apply to ftom -} Furthermore, if jtonr “t wpM
were indeed a state on M the proof of the difference inequality Iq. (15) on
I. would follow immediately fromn the proof of ANEC on MI: the regularized
stress-climgy of this “state” on Minkowskispacetime is precisely the difference



{(Tas)1, - Dgp which appears In the integrand in Kq. (15). Unfortunately (for
my purposes), the two-point function ftoar 4 wy,™ ingeneral does violate the
positivity condition on Minkowski space, and therefore does not represent  a
Minkowski quantumstate for every choice of wjy,. Thedecmonstration of this is
only dlightly more involved thantheargumentl gave in the preceding paragra ph
(which proved that jor,™ 4w; ™ violates positivity). Namely, consider the
following expressions for the two-p oint distributions #om and 1o, M :

pom(F0) = [ dkIfE - D @)
pou () = D0 g (AR DL€ CR4), (28)

where f(k,w) demotes the Fourier transform

[k, w) = -217[/ / e” Hkdwt) £ 1) da di

of fe€ L'."(M), kn=2an/L,and AK z k4 - ky = 2n/L. The prime on
the summation sign in liq. (28) indicates that the suin excludes n= O; this is
because massless quantumn field theory in two dimensions is formulated with
test functions f € C§ (M) which satisfy [ f= O to avoid infrarcd-divergence
problems. [See the paragraph following IXq. (17) in [4] for an explanation of this.
Note that 1 ignore this complication alinost completely throughout iny analysis
in this paper becausc accommodating 1t would not make any diflerence (except
for making my notationmore comnplicated than it already is) inthe flow of mny
argument.] Now the bi-solutionwy, is required to satisfy only the inequality
I'q.(26), so that

(or™ 4w M)(f, f) 2 0 VieCe (M), (29)

whereas to be the regularized two-point function of a quantumn state on Minkowski
spaceit would need to satisfy

(o -} wi™) (£, /)2 0 Ve CE(M) . (30)

It is therefore suflicient to show that there exist wj, which satisfy Iq. (29) but
violate Iiq. (30). [Note that there exist many wj, whit.11 satisfy both Iigs.(29)
and (30); any wy, which, as a bi-solution, decomposes into the tensor product
of a solution with itself is anexample of this. In fact, for such a two-particle
state onl., the “unwrapping” ftoM + wy, * does correspond to a genuine state
on Minkowski spacetime.] To see that this is indeed the case, consider those
J € C§° (M) whose Yourier transforms f(k, w) arc sharply peaked around the
quantized frequencies k = k,,, w = - |ky].[To find a comnpact supported f
of this kind, start with a f(k,w)in L2(?) which is such that (i) for fixed
wo, f(k, wo) decays at infinity faster than any inversc polynomnial and is the
restriction to IR of an entire function f; (z) on C, and, similarly, for fixed k,
j(ko,w) decays at infinity faster than any inverse polynomialand is the restric-
tion to R of an entire function fz(z)onC, (i) a complex infinity, f; (2) has the
asymptotic behavior |3 (2)] < Mye®1?1, and, similarly, f2(2) has the asymptotic
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bcllavior|fg(z)|g Myca2l2l a; >0, M; >0, and (iii) f(k,w) is sharply peaked
around (K, - [k.|), n € Z. The inverse Fourier transforn f(z, 1) is then guar-
anteed to be € and of compact support by Theorem 7.4 in Chapter 6 of [21].]
According to Figs. (27)- (28), whensimecared with these f, jio;, ¥ (£, f) becomes
arbitrarily large incomparison with fom(f, f) as f(k, w) get more and more
sharply peaked around (k,,, - |ky|). It is then clear that a wy, can be found such
that sior,™ + w), M satisfies 1q.(29) for dl f € C§ (M), but for these “spiky” f
peaked at (ky,, - [kn|), wr,M(f, f)nanages to be more negative than o (f,f)
and hencee violates Eq. (30).

Although the obvious “casy” proof Of the difference inequality Fq. (15)
scemis t0 be ruled out by the above arg ument, the results of this sectionalready
provide dl the necessary extraingrediceuts which, when comn bined with the proof
of ANECin Sect.4 of [4], conditute a cotnplete proof of g, (156)as 1 will now
explain.

4. Proof of the difference ineguality in flat S! x R spacetime

As this section follows Sect.4 of [4] very closely, for brevity 1 will usc
the prefix 4 to denote equationsiu [4]; eg., ¥q.(4.30) will denote ¥.q.(30) of
Reference [4]. Let for, 4wy, be alladamard state on 11, of the form kq. (23),
and let v be a complete null geodesic inll.. Just as the two- point distributions
on I were pulled back to MI inthe previous scction, so canthenull geodesic v
be lifted to @ complete null geodesic 4 on M, 1 canthen carry out, my analysis
entirely on Minkowski spacetime as in Sect. 4 of [4]. Assumne, without, loss of
generality, that ¥ = {u = O}. Decfine

’ AN a? M ’
],('U, v ) = 6'1)8"071“11 (07 v, O) v ) . (31)
It is then obvious that aloug 7,
({Ta(0)r - Dap )k = ({Too) 1. = Duw ) = Yi(v, v), (32)

where {(7ab(v)) 1. denotes the regularized stress-energy along + pulled back o ¥,
and Day is the stress- encrgy tensor [q. (14)] of the Casimir vacuum state ftor.,
again pulled back to 4.l precise but curnbersome notation (which therefore 1
willavoid) these quantities rcally should be written as 7" ({7Tas) 1) and n* Das,
where 7 : M->1.is the canonical projection. Now, byapplying exactly the
sanc arguments as those in [4] leading to Iiq. (4. 30), 1 deduce from the positivity
inequality Eq. (26) that for all functions Iy, 2 € C§° (),

00 o0
{2/101,]"[1"1,1"]] - 8/ / 1L{v, VY (v) (V') do dv'] X
~00 J~00

X [2/101,1”[1"2,]"2]—{ 8/ / Y1, (v, v ) P2 (v)Fo(v') dv dv']

> oM, 17, (33)
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where now instead of Yqgs. (4. 26) and(4.31) have,in accordance with 1iq.(28),

o0
porM 11 B =23 "k Bk AR (34)
nz=0
and "
orMF, Fl= -4 i > kB (k) Falky) Ak (35)
n=0

I will now trace the argumnentsin [4] following kq. (4. 31) and verify that they
lead to a proof of the difference inequality 1 .q. (15) as promised. IFirst assumne,
asin [4], that the function Yy, (v, v') belongs to Schwartz spat.c, i.e., it and
all its derivatives decay at infinity faster than any polynomial. By the saine
algebra that leads in[4]to kiq. (4. 32), it follows from ligs. (33)- (35) that for all
Iy, Fy € C3R (%)

had N I oo
D kalPy(kn) | Ak A £, 1Y) - n(m,ml) x

[11:0

o0
" [}.I kul Pa(kn)I? Ak 4 €(Fa, Ta) - 0(F, 1?'2)]
n=0

2

> []m 3 kB (k) Folka) AR (36)

n=0

where £(F', F'yand y(F', F) are given by the same expressions as Fgs. (4. 33)
(with ¥ replaced with ¥;). Then, preciscly the same argument which in [4]
lcads from Eq. (4. 32) to kqgs. (4. 39) and (4. 40) leads here tothe conelusio]ls

Yi(k,~k) 20 Vre[0,00), (37)

and, as inliq. (4.40),
[e¢] o0 .
/ Y1 (v,v)dv = 2 / Yi.(k,- k)dk, (38)
) 0

which, when combined with Yq. (32), prove the diflerence inequadity Iiq. (15) in
this Schwartz-s pace Y7, (v, V') case [in which the integrand ({Tas) 2. — Dy Ykk? is
integrable]. Inthe general case, the argument1 need to use is again identical to
the onein [4] between kigs. (4, 40) and (4. 59), except that in the present analysis
it leads to equalities of the form

porM [Fxxy Fa il B, &) B Ak 4 a(Ax)]

ot MGk, Grx) = BN K) [%/\h"l 2(Ak)) (39)
OJ,M[F/\,):: G)\,rc] = ﬁ(’\) ’C) [)\K, - CS(AH)]

"

With the same choices for Fi, c(v)and Gy «(v) asm¥iqs. (4.42). Here () is
a continuous functionsuch that

0 <B(A k) <1 YVA>0,k20, (40)

and ¢(z) arc continuous functions with the same decay property as described
in [4] following q. (4. 46). Thesecond part of the argument [spelled out in [4]
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between Fgs. (4.48) and (4. 59)] canbe repeated identically here, leading to the
incquality

/ (Tandr, - Duo)e(w/N] dv > - / B, ¥/ o(w) (41)

By ¥q. (40) and the asymptotic behavior of ¢ (), there exist §, K > 0 such
that

/my/k)cloy)dy /(Hy”" dyz -C, C>0, (42

and, when combined with Eq. (41), this inequality proves not only the difference-
inequality result

1i>‘minf/ ({Tv)1 - De)e(/N))P dv = 0, (43)
but also the sharper estimate
C
S Dt s - @

as in Eq. (4.59),

5. Proof of the differcnee incquality in curved two-dimmensional space-
time

Cousider a two-dimensional, globally hyperbolic spacetitme (M, g) with
amassless Klein-Gordon field ¢,and let 4 be a complete null geodesic in M.
By Sect. 5 of [4], if vy isachronal the renormalized stress-cllcrgy tensor inevery
Hadamard state of ¢ satisfies the diflerence inequality Fq. (15) along -y with
Dgp = O (ie, it satisfies ANEC). If v is not achronal, then 1 claim that (M, g)
has topology S X IR and is globally conforinal to a flat cylinder i, for some
L>0.

To prove this, let p and g beany pair of timnelike-related points along
vy (such pairs exist since y is assuined non-achronal). Assume that ¢ € 1 (p).
Since (M, g) is globally hyperbolic, it is causaly simple ([22]), i.e, jJ'(p) con-
sists of null geodesics from p which have no past endpoints other than p itself.
Clearly, qcannot belong to J*(p) asit is timelike-related top; therefore, + must
leave J*(p) a somne point p’ to the past of g. Since J+ (p) is an achronal CV
submanifold without boundary ([22], Chapter 6), and 3’ lies on J* (p), 7 must
intersect the Other null generator 6 of J 1(p) a p'; otherwise p’ would lic on the
boundary of J(1)(p). The portion of & to the future of p' is timclike related
to p (since every point in this portion lies on a brokennull geodesic from p),
therefore & must also leave J* (p) a p'; otherwise J+ (») would not be achronal.
Consequently, J1(p) is compact. Because (M, g) is globally hyperbolic, there
exists a Cauchy surface > through p, and any global timelike vector field on M
provides a difleomorphism from J+ (p) into X, Since JH (p) is compact with-
out boundary, > must also becompact. But the only compact I-manifold is
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S', and by global hyperbolicity M is diffcomnorphic to 3 x IR, therefore, M is
diffcomorphic to S' x k. ‘1'0 prove that (M, g) is globally conforinaltoll, it
suflices to siinply carry out the usual local argmnent which proves that auy two-

dimensional spacetime is localy conformally flat, using as the time coordinate ¢
asmooth labeling of the Cauchy sui-faces S'c. M, and asthe 2 coordinate any
coordinate on one of the Cauchy S'’s extended globaly onto M (apart fromi the
obvious coordinate singularity on S) by keeping it constant along atimelike
vector field orthogonal to the Cauchy surfaces. Tosummarize: if a globally
hyperbolic (M, ¢) adinits a non-achronalnull geodesic, thenthere exists a dif-
feomorphism ¥ :1. - » M such that ¥* ¢ = C(w, v) 55, where 9y, = - du dv is the
flat metric on 1. written in local null coordinates {u, v},andC(u, v) > 0 is a
smooth functionon Il..

With + a complete non-achronal null geodesic in (M, g), aud with tbc
simple geomnetry of M as uncovered inthe above paragraph, it is now quite
straightforward to give aunanalysis pardlel to that of Sect. 5 in [4], where the
proof of ANECin curved two-diinensional spacetime was reduced to the pre-
ceding proof in flat Minkowski space. Namely, the Casimir vacuum state on
I. given by Eq. (28) deterinines, under the conformal isometry ¥ @ 1. - » M, a
corresponding quantum state on M. [This is because the massless wave oper-
ator as well as the Klein-Gordon inner product u arc conforinally invariant in
two dimensions, consequently there exists a one-to-one correspondence between
states definedon 11. aud states defined on M, determined by mapping the two-
point distributions backwards or forwards via the diffcomorphism ¥. Note aso
that the spacetime (M, @) is in fact isometric to the eylinder . equipped with
the metric g = C 5y, = - C(u, v)du dv, therefore | can usc this representation
of (M, g) throughout without any loss of generdity, aud as this will siinplify
my notation considerably | will do so from here on.] Let me denote the two-
point distribution of this state by si.(#, 2') [in the isometric representation of
Mas (1., g), this distribution has the same functiona formnas sy, (2, 2')]. The
renormalized stress-energy in this “conforimal” Casimir vacuum is determined
entirely by the con formalanomaly [see Yigs. (1 0)- (1 1) in [3]], and can be written
inthe form

1 1
Dy = _v])fl(l))) 4 - ’VRQab + bap (45)

C 482
where I)((l(;) is the Casimir energy on the flat 1. given by the right hand side of
Fq. (14), R is the Ricci scaar of (M, g),and, in the local null coordinates {u, v},

1 [Chn  3C.°

boes g Tee 30y

1 ¢, 3cC,°
v = 94, ["C 2 Cy (46)
Ouv = Ovu: 0.

Now, any Hadamard state on (M, g) has a two-point function of the form
p(z, 2"y = po(a,2') 4wz, 2, (47)
where w(a,2') is a smooth bi-solution such that j satisfies the positivity in-

cquality liq. (19). It is crucial to keep inmind that athough s (z, ) has the

14




Hadamard form, it is not alocally constructed two-point distribution, hence it
cannot be used to regularize y(z, 2') as Fq. (47) suggests. Instead, an appropri-
ate Hadamard distribution) sy constructed entirely out of the local geometry
of (M, g) needs to be subtracted from ytoobtainthe regularized two-point
function; thccomponents of the stress-energy tensor are then obtained as the
coincidence limnits of the derivatives of this regularized two-point function ji— ez .
[This point is of course aso valid for the analysis of the previous section, where
it was implicitinthe derivation of Eq. (32) from Eq. (31).] However, for my anal-
ysis here (as aso for the analysis of the previous section), it isuot necessary
to make explicit the forin of py (22, 2"); the stress-c]lcrgy due to the difference
Jic -y 1s dready determined completely by the Casimir contribution Fqgs. (45)-
(46), andthe rest of the stress-cllergy is givensiinply by coincidence litnits of
the appropriate derivatives of the smooth bi-solution w(z, 2). Therefore, ex-
pressions Of the form kgs. (31)- (32) (with wreplacing WI, ) arestill valid for the
difference-inequality integrand ({7as) -- 1)a)k%k? along v, and using the posi-
tivity inequality for the two-point, functionliq. (47) in exactly the saimnenanner
as 1didinthe previous section, 1 arrive at the following final conclusion:

Theorem:Let (M, g) be a globaly hyperbolic two-dimensional spacetime with
a massless Klein -G ordon field ¢. Thenthe regularized stress-energy tensor
{w|Tas|w) of ¢inany Hadamard state w iS constrained in the following way:
(i) Along every achronal complete null geodesic v ¢ M the difference inequality
Eq. (15) holds with Dab = 0. (ii) If Madmits anon-achronalnull geodesic,
then (M, g) is globally conformalto I, & S'Xx R, and along every complete null
geodesic v in M the diflerence inequality Kq. (15) holds with 134, defined by
Fgs. (45)- (46).

The proof of the difference inequality in two dimensions suggests that
more generally, when (M, g) is amultiply- connected (four-d imensional) glob-
aly hyperbolic spacetime, au inequality of the form ¥q. (15) might hold on a
complete non-achronal null geodesic « if the lifting of + inthe simply-connec ted
covering space M is achronal and satisfies A NEC. When v is a non-achronal
complete null geodesic in a sitply-connected spacetime (i. €, when the failure
of achronality is due to gravitational focusing rather thanthe topology of M),
my proof does not provide any insights into whether difference inequalities arc
reasonable as constraints onthe stress- encrgy tensor aong .
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